
Online Appendix for “Location Choices of Multi-plant
Oligopolists: Theory and Evidence from the Cement Industry”
by Chenying Yang

These appendices derive results and provide further details of the paper. Equation numbers refer
to those in the main text.

A Model details

For simplicity of derivation, I invert the marginal cost and derive the following equation based on
a plant’s cost-adjusted productivity

Z̃fℓim =
Zfℓi

wℓτℓm
.

A.1 Conditional joint distribution of the two lowest cost firms

Conditional on firm f ∗’s plant in ℓ∗ supplying to a consumer i in market m, i.e., Z̃1,i(m) = Z̃f∗ℓ∗im

and Z̃2,i(m) = maxf ̸=f∗,f∈F{Z̃1,fi(m)}, the joint distribution of the first and second highest firm-
level productivity is

F12,m|f∗ℓ∗(z1, z2) = Pr
(
Z̃1,i(m) ≤ z1, Z̃2,i(m) ≤ z2 | Z̃1,i(m) > V

)
(A-1)

= Pr
(
Z̃1,i(m) ≤ z2 | Z̃1,i(m) > V

)
+ Pr

(
z2 ≤ Z̃1,i(m) ≤ z1, Z̃2,i(m) ≤ z2 | Z̃1,i(m) > V

)
,

where V ≡ max{Z̃2,i(m), S} and S ≡ maxℓ∈Lf∗ ,ℓ̸=ℓ∗{Z̃f∗ℓim}, given z1 > z2.
The distribution of S is

F S
m(s) = exp

(
− (Φf∗m − ϕℓ∗m) s

−θ
)
,

and the distribution of V is

F V
m (ν) = exp

(
− (Φm − ϕℓ∗m) ν

−θ
)
.
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The first part of equation (A-1) can be simplified as

Pr
(
Z̃1,i(m) ≤ z2 | Z̃1,i(m) > V

)
=

Pr
(
V < Z̃f∗ℓ∗im ≤ z2

)
sf∗ℓ∗m

(A-2)

=
Φm

ϕℓ∗m

∫ z2

0

[
F̃ draw
ℓ∗m (z2)− F̃ draw

ℓ∗m (V )
]
dF V

m (V )

= exp
(
−Φmz

−θ
2

)
,

where F̃ draw
ℓ∗m (z) = exp

(
−ϕℓ∗mz

−θ
)
, and the probability of sourcing sf∗ℓ∗m = ϕℓ∗m/Φm derived

from equation (10) and the setting where plants at the same location are identical regardless of the
firm it belongs.

Next, the second part of equation (A-1) is equal to

Pr
(
z2 ≤ Z̃f∗ℓ∗im ≤ z1, Z̃2,i(m) ≤ z2, Z̃f∗ℓ∗im > V

)
sf∗ℓ∗m

=
Pr
(
z2 ≤ Z̃f∗ℓ∗im ≤ z1, Z̃2,i(m) ≤ z2, Z̃f∗ℓ∗im > S

)
sf∗ℓ∗m

,

based on the definition of Z̃2,i(m). The numerator can be further simplified as

Pr
(
z2 ≤ Z̃f∗ℓ∗im ≤ z1, Z̃2,i(m) ≤ z2, Z̃f∗ℓ∗im > S

)
= Pr

(
z2 ≤ S ≤ Z̃f∗ℓ∗im ≤ z1, Z̃2,i(m) ≤ z2

)
+ Pr

(
S ≤ z2 ≤ Z̃f∗ℓ∗im ≤ z1, Z̃2,i(m) ≤ z2

)
=

∫ z1

z2

[
F̃ draw
ℓ∗m (z1)− F̃ draw

ℓ∗m (S)
] ∏
f ̸=f∗

F̃1,fm(z2)dF
S
m(S)

+

∫ z2

0

[
F̃ draw
ℓ∗m (z1)− F̃ draw

ℓ∗m (z2)
] ∏
f ̸=f∗

F̃1,fm(z2)dF
S
m(S)

=
ϕℓ∗m

Φf∗m

(
e−(Φm−Φf∗m)z−θ

2 e−Φf∗mz−θ
1 − e−Φmz−θ

2

)
,

where F̃1,fm(z) = exp
(
−Φfmz

−θ
)
.

The second part of equation (A-1) is therefore

Pr
(
z2 ≤ Z̃1,i(m) ≤ z1, Z̃2,i(m) ≤ z2 | Z̃1,i(m) > V

)
=

Φm

Φf∗m

(
e−(Φm−Φf∗m)z−θ

2 e−Φf∗mz−θ
1 − e−Φmz−θ

2

)
.

(A-3)
By summing equations (A-2) and (A-3), the joint distribution of highest two cost-adjusted
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productivities conditional on f ∗ from ℓ∗ selling to i in m is

F12,m|f∗ℓ∗(z1, z2) =
Φm

Φf∗m
e−(Φm−Φf∗m)z−θ

2 e−Φf∗mz−θ
1 − Φm − Φf∗m

Φf∗m
e−Φmz−θ

2 .

The associated p.d.f. is

f12,m(z1, z2) = Φm(Φm − Φf∗m)θ
2z−θ−1

1 z−θ−1
2 e−(Φm−Φf∗m)z−θ

2 e−Φf∗mz−θ
1 .

Note that the conditional joint productivity distribution is invariant to ℓ for the same firm,
F12,m|f∗ = F12,m|f∗ℓ∗ . The conditional joint cost distribution is given by

F c
12,m|f∗ (c1, c2) = 1− F12,m|f∗(∞, c−1

2 )− F12,m|f∗(c−1
1 , c−1

1 ) + F12,m|f∗(c−1
1 , c−1

2 ),

which results in equation (5).

A.2 Price distribution

The price of consumer i in market m is

Pi(m) = min{ 1

Z̃2,i(m)

,
µ̄

Z̃1,i(m)

}.

Conditional on firm f ∗ serving the consumer in the market, the complement of the price c.d.f. is

1− F p
m|f∗(p) =Pr

(
p ≤ 1

Z̃2,i(m)

<
µ̄

Z̃1,i(m)

| Z̃1,i(m) > V

)
︸ ︷︷ ︸

T1

+ Pr

(
p ≤ µ̄

Z̃1,i(m)

≤ 1

Z̃2,i(m)

| Z̃1,i(m) > V

)
︸ ︷︷ ︸

T2

.

By deriving each component, I have the firm term

T1 =

∫ ∞

p−1

∫ p−1

z1/µ̄

f12,mdz2dz1 +

∫ p−1

0

∫ z1

z1/µ̄

f12,mdz2dz1

=
Φm

Φf∗m
e−(Φm−Φf∗m)pθ − Φm − Φf∗m

Φf∗m
e−Φmpθ − Φm

Φf∗m + (Φm − Φf∗m)µ̄θ
,

3



and the second term

T2 =

∫ ∞

0

∫ µ̄/p

µ̄z2

f12,mdz1dz2

=
Φm

Φf∗m
e−Φf∗mµ̄−θpθ − Φm/Φf∗m(Φm − Φf∗m)µ̄

θ

Φf∗m + (Φm − Φf∗m)µ̄θ
.

Combining T1 and T2 and subtracting from one, I get the price distribution exactly equals equation
(6).

Before calculating the expected price, it is useful to state a Lemma

Lemma 1. For ω > 0 and θ + 1 > 0,∫ ∞

0

z−θ−2e−ωz−θ

dz = ω
−1−θ

θ
1

θ
Γ

(
θ + 1

θ

)
The expected price is

E
[
Pm|f∗

]
=

∫ ∞

0

∫ z1

z1
µ̄

(
1

z2

)
f12,m(z1, z2)dz2dz1︸ ︷︷ ︸
T1

+

∫ ∞

0

∫ z1
µ̄

0

(
µ̄

z1

)
f12,m(z1, z2)dz2dz1︸ ︷︷ ︸
T2

.

By changing the order of integration and applying Lemma 1, the first term is simplified to

T1 =
Φm

Φf∗m
(Φm − Φf∗m) Γ

(
θ + 1

θ

)[ (
Φm − (1− µ̄−θ)Φf∗m

)−1−θ
θ − Φ

−1−θ
θ

m

]
,

and the second term is

T2 = µ̄−θΦmΓ

(
θ + 1

θ

)(
Φm − (1− µ̄−θ)Φf∗m

)−1−θ
θ .

Combining the two terms, the expected price is derived as in equation (7).
If a firm always prices against the second-lowest cost, its own cost reduction due to building

additional plants has no impact on the firm’s prices. However, if the monopoly price always pre-
vails, the firm’s cost reduction fully pass to its prices. Therefore, intuitively, having more plants
weakly decreases the firm’s average price. Formally, one can take first-order derivative (FOD) of
E
[
Pm|f∗

]
with respect to Φf∗m, and for θ > 0 and µ̄ > 1, the FOD is non-positive.
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A.3 Markup distribution

Conditional on firm f ∗ serving the consumer i in market m, for markups below the monopoly
level, the distribution is

F µ
m|f∗(µ) = Pr

(
Z̃1,i(m)

Z̃2,i(m)

≤ µ | Z̃1,i(m) > V

)
.

I first calculate the complement of the c.d.f.,

1− F µ
m|f∗(µ) = Pr

(
Z̃2,i(m) ≤ µ−1Z̃1,i(m) | Z̃1,i(m) > V

)
=

∫ ∞

0

∫ µ−1z1

0

f12,m(z1, z2)dz2dz1

=
Φm

Φf∗m + (Φm − Φf∗m)µθ
.

The conditional markup distribution is then

F µ
m|f∗(µ) = 1− 1

µθ − Φf∗m
Φm

(µθ − 1)
= 1− 1

(1− sf∗m)µθ + sf∗m
.

Given the markup µ ∈ (1,∞), it is straightforward that limµ→1 F
µ
m|f∗(µ) = 0 and limµ→∞ F µ

m|f∗(µ) =

1. With additional plants built by firm f ∗, sf∗m increases, and the value of c.d.f. decreases which
implies the firm’s markup distribution is shifted in a first-order stochastic dominance sense, leading
to an increase in the firm’s expected markup.

Moreover, the probability of a firm earning monopoly markup increases with its number of
plants. Given the second-lowest cost z2 and firm f ∗ supplying the consumer,

F µ
m|f∗,z2

(µ) = Pr
(
Z̃2,i(m) ≤ Z̃1,i(m) ≤ µZ̃2,i(m) | Z̃2,i(m) = z2

)
=

∫ µz2
z2

f12,m(z1, z2)dz1∫∞
z2

f12,m(z1, z2)dz1
=

e−Φf∗m(µz2)−θ − e−Φf∗mz−θ
2

1− e−Φf∗mz−θ
2

.

Therefore, the probability of firm f ∗ charging a monopoly markup is

1− F µ
m|f∗,z2

(µ̄) =
1− e−Φf∗m(µ̄z2)−θ

1− e−Φf∗mz−θ
2

.

Taking the first-order derivative with respect to Φf∗m, the probability of the firm earning a monopoly
markup strictly increases with its producing capability Φf∗m. This implies that when knowing the
price otherwise charged is c2, the firm is more likely to exploit the maximum markup if it has more
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plants at favorable locations (hence higher Φfm), to widen her efficiency gap to the next lowest
cost rival.

A.4 Expected revenue

Conditional on firm f ∗, its expected revenue of cement sold to destination market m is

E
[
Rm|f∗ ] = AmE

[
P 1−η
m|f∗

]
,

The expectation is taken with respect to the random price realization. The derivation resembles the
conditional expected price’s derivation in Section A.2, and

E
[
P 1−η
m|f∗

]
=

∫ ∞

0

∫ z1

z1
µ̄

(
1

z2

)1−η

f12,m(z1, z2)dz2dz1 +

∫ ∞

0

∫ z1
µ̄

0

(
µ̄

z1

)1−η

f12,m(z1, z2)dz2dz1.

= Γ

(
θ + 1− η

θ

)
︸ ︷︷ ︸

κ

Φm

Φf∗m︸ ︷︷ ︸
1/sf∗m

(Φm − (1− µ̄−θ)Φf∗m

)− 1−η
θ − (Φm − Φf∗m) Φ

− θ+1−η
θ

m︸ ︷︷ ︸
R̄f∗m

 ,

for θ + 1− η > 0. The unconditional expected revenue is therefore E
[
Rf∗m

]
= κAmR̄f∗m.

A.5 Expected cost

Conditional on firm f ∗, its expected total variable cost of cement sold to destination market m is

E
[
Cm|f∗

]
= AmE

[
P 1−η
m|f∗

µ

]
= Am

{∫ ∞

0

∫ z1

z1
µ̄

(
1

z2

)1−η
z2
z1
f12,m(z1, z2)dz2dz1︸ ︷︷ ︸

T1

+

∫ ∞

0

∫ z1
µ̄

0

(
µ̄

z1

)1−η
1

µ̄
f12,m(z1, z2)dz2dz1︸ ︷︷ ︸

T2

}
.

Before further simplification, I provide the following mathematical property,

Lemma 2. For ω > 0 and 2θ + 1− η > 0,∫ ∞

0

z−2θ−2+ηe−ωz−θ

dz = ω− 2θ+1−η
θ

(
θ + 1− η

θ2

)
Γ

(
θ + 1− η

θ

)
.
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Replacing z1 by µz2 and changing the order of integration, the first term equals

T1 = Φm(Φm − Φf∗m)(θ + 1− η)Γ

(
θ + 1− η

θ

)∫ µ̄

1

µ−θ−2
(
Φm − (1− µ−θ)Φf∗m

)− 2θ+1−η
θ dµ.

Unfortunately, there is no closed-form expression for the integral. Therefore, I apply the numerical
approximation in the empirical section.

Applying Lemma 2, the second term is simplified to

T2 = µ̄−θ−1ΦmΓ

(
θ + 1− η

θ

)(
Φm − (1− µ̄−θ)Φf∗m

)− θ+1−η
θ .

Combining the two terms and multiplying by the probability of firm f ∗ is selected gives the un-
conditional expected total variable cost E

[
Cf∗m

]
= κAmC̄f∗m.

B Model extension: adding core productivity differences at firm
level

Suppose a plant’s marginal cost of production is affected by its parent firm’s endowed core pro-
ductivity Zf ,

Cfℓim =
wℓτℓm
ZfZℓi

,∀i ∈ Dm

where Zℓi are draws from the Fréchet distribution exp(−Tℓz
−θ). The c.d.f. of the plant’s cost-

adjusted productivity Z̃fℓim = Zℓi

wℓτℓm/Zf
is then

F̃ draw
fℓm (z) = exp(−ϕfℓmz

−θ),

where ϕfℓm = Zθ
fϕℓm = Zθ

fTℓ (wℓτℓm)
−θ. The distributions of plants’ productivities at the same

location are shifted by firms’ core productivities, although the shape parameter remains the same.
Plants owned by an efficient firm are on average more productive than those owned by inefficient
firms at the same location. Exploiting the properties of extreme value distribution, the distribution
of a firm’s highest cost-adjusted productivity in supplying the product to market m is

F̃1,fm(z) = exp(−Φfmz
−θ),

where Φfm =
∑

ℓ∈Lf
ϕfℓm. The firm’s capability not only depends on plants’ spatial setting but

also its core productivity. One can complete the model following the same steps but replacing with
the new formulation of Φfm. The model propositions remain to hold.

7



To estimate this extended version of the model, additional firm-level data is necessary. The
gravity model holds at the plant level where sfℓm =

ϕfℓm

Φm
conditional on firm f has a plant at

location ℓ, and the estimable form is

E

[
Qfℓm

Qm

| Ifℓ = 1

]
= exp

[
FEf + FEℓ + FEm − θX

′

ℓmβ
τ
]
,

where FEf = θ lnZf and FEℓ = ln
(
Tℓw

−θ
ℓ

)
. Plant-market-level trade flow in volume will be

needed to separately identify the location characteristics Tℓw
−θ
ℓ from firm productivities Zf . Note

that the probability of a location exports goods to a market becomes sℓm =
ϕℓm

∑
f∈Fℓ

Zθ
f

Φm
, where

Fℓ indicates the set of firms producing at ℓ. So a regression at bilateral location level is no longer
sufficient.

C Estimation details

C.1 Estimation of the trade elasticity

There are three groups of trade flows to consider: across Canada-FAF flow, across US-FAF flow
and US-FAF-Canada-FAF flow. For the first group, the cement trade across Canadian FAF zones is
directly provided by the Canadian FAF survey. The drawback of using Canadian Freight Analysis
Framework is that it is a logistics file built on a carrier survey where the origins and destinations
are not necessarily the points of production or final consumption. The US Freight Analysis Frame-
work, on the other hand, is based on the US Commodity Flow Survey (CFS) and collects data
on shipments from the point of production to the point of consumption. However, the limitation
of using US FAF survey is that the commodities are classified at the 2-digit level of Standard
Classification of Transported Goods (SCTG) where cement is a subcategory of nonmetallic min-
eral products. Other products included in the nonmetallic minerals category are glass, bricks, and
ceramic products. To derive US-FAF cement trade, I assume that the cement trade is propor-
tional to nonmetallic mineral trade by the fraction of cement consumed in nonmetallic mineral
consumption by destination FAF zone. Because the US Geological Survey only provides cement
consumption by state, not by FAF zone, I further assume that the consumption ratio of cement over
nonmetallic minerals is the same for every FAF zone within the same state. I also validate that the
trade coefficients are not significantly different between cement and nonmetallic minerals using a
country-level sample, as shown by the insignificant interaction terms in Table C.1.

Lastly, I need to allocate the cement trade data between Canadian provinces and US states
provided by Statistics Canada to that of each FAF zone dyads. A key variable given by the US
Commodity Flow Survey is the distance band between origin and destination where there is pos-
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Table C.1: Trade estimates for cement and nonmetallic minerals

Great circle distance Sea distance Shipping time
log distℓm -2.105a -1.255a -1.095a

(0.090) (0.051) (0.068)

log distℓm× industry -0.032 -0.056 -0.022
(0.078) (0.053) (0.077)

contiguityℓm 1.072a 1.668a 1.186a

(0.160) (0.139) (0.196)

contiguityℓm× industry 0.100 0.074 0.082
(0.184) (0.171) (0.222)

languageℓm 0.437a 0.675a 0.735a

(0.143) (0.133) (0.143)

languageℓm× industry 0.083 0.084 0.086
(0.161) (0.159) (0.170)

RTAℓm 0.540a 0.838a 0.939a

(0.131) (0.129) (0.135)

RTAℓm× industry 0.237 0.204 0.244
(0.188) (0.194) (0.205)

industry 0.008 0.219 -0.207
(0.639) (0.459) (0.210)

Observations 33842 33842 33842
R2 0.397 0.398 0.325

The dependent variable is share of export volume. All regressions include origin and destination
fixed effects and are performed using PPML. Sample is for 2016 and 144 countries. Trade with
own is dropped from the sample since the data are unavailable for the nonmetallic mineral prod-
ucts. Different columns use different measurements of distance. R2 is the correlation of fitted
and true dependent variables. Robust standard errors are in parentheses. Significance levels: c

p<0.1, b p<0.05, a p<0.01.

itive cement shipment. Comparing the distance between each US-Canada FAF zone dyads with
the distance band and considering the zones with positive cement production, the sample of pairs
that are likely to have positive cement trade is reduced substantially. Then, I compute trade in this
restricted sample. Trade between each FAF zone pair is derived by apportioning the associated
state-province trade by the total export and import of the originating zone and the destination zone.
The assumption is that within the same state-province pair, one zone cannot export to a destination
more than its nearby zone if its total export is smaller. I acknowledge the restrictiveness of the
assumption due to data limitation.

In columns (4) and (5) of Table 1 in the main text, I present the trade elasticity estimates using a
country sample. Table C.2 provides alternative specifications and shows that the results are similar
using PPML.
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C.2 Estimation of demand

Table C.3 presents the first-stage results of the demand estimation using the price survey data. The
cost shifters are indeed significantly correlated with cement prices. The F-statistics of the excluded
instruments on the endogenous regressor is 21.64, and the Stock-Wright S statistics is 95.59. Both
are above the rule-of-thumb threshold of 10. Hence, the tests reject the weak IV concern.

Table C.3: First-stage regression for demand estimation

log pricem
log (

∑
ℓ ̸=mnatural gasℓ/dℓm) 0.410a

(0.073)

log (
∑

ℓ ̸=melectricityℓ/dℓm) -0.159
(0.125)

log (
∑

ℓ ̸=mwageℓ/dℓm) 1.238a

(0.146)

log (
∑

ℓ ̸=mlimestoneℓ/dℓm) -0.046
(0.067)

log natural gasm -0.037a

(0.012)

log electricitym -0.032c

(0.017)

log wagesm 0.099a

(0.031)

log limestonem 0.022b

(0.009)

log building permitsm 0.025a

(0.006)

log populationm -0.038a

(0.006)

F test of excluded instruments 21.64
Stock-Wright LM S statistic 95.59
Observations 739

First-stage regression for column (3) in Table 2. Price is from the data
based on survey regions and then assigned to the 149 FAF zones. dℓm
is the distance between a location-market pair. The regression includes
year fixed effects from 2012 to 2016. Variables other than the number of
building permits and population are excluded instruments. Robust stan-
dard errors are in parentheses. Significance levels: c p<0.1, b p<0.05, a

p<0.01.
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C.3 Estimation of fixed costs

To find each firm’s optimal plant set given the other firms’ plant locations, I adopt the algorithm
in Arkolakis and Eckert (2017) as following. Define firm f ’s marginal profit of including ℓ in a
location strategy Lf as

∆ℓΠf (Lf ) = Πf (Lf ∪ ℓ)− Πf (Lf \ ℓ).

In the single-player case, starting from Lf = L, which contains all potential locations, ℓ ∈ L1
f if

∆ℓΠf (L) > 0. Also, at the other extreme, starting from Lf = ∅, which contains no entries, ℓ ̸∈ L1
f

if ∆ℓΠf (∅) < 0. The first round of mapping confirms some elements of the location vector. Now
I iterate the mapping until a complete equilibrium location set is reached with no possibility of
further refinement. When there are indefinite locations, the set of possible vectors is sliced to any
two subsets, and then map each of the subsets separately. Slicing and mapping is repeatedly done
until a unique optimal location vector L∗

f emerges.
Firms take turns to solve the best location response. The multi-plant firm location game in

this paper is also a best-response potential game shown in Section 2.3. Developed in Voorneveld
(2000), a best-response potential game, under the condition of a finite game where the number
of players is finite and each of them has a finite strategy space, always has pure strategy Nash
equilibrium. Moreover, starting from any arbitrary location decision, if players simultaneously
deviate to their unique best replies in each period, the process terminates in a Nash equilibrium after
finite number of steps. Swenson and Kar (2017) found that the convergence rate is exponential.
To gauge the computational cost of solving a multi-player CDC problem, I simulate examples of
6 to 12 locations and two firms. Each example is simulated 1000 times. Table C.4 shows that
the maximum number of rounds to find an equilibrium is three. When the potential number of
locations is larger and therefore the strategy space is larger, it takes longer to find an equilibrium,
but still converges to a solution relatively quickly.

Table C.4: Convergence rate check of best-response potential game

Number of
locations

Average time
(seconds)

Average number of
BR rounds

Max number of
BR rounds

6 0.0198 1.0830 3
7 0.0429 1.1010 2
8 0.0494 1.0190 2
9 0.0596 1.1830 3

10 0.0934 1.1230 3
11 0.0963 1.1980 2
12 0.1275 1.1130 2

Next, I would like to briefly discuss different ways of handling multiple equilibria and the rea-
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son I choose to impose a certain entry sequence. There are four main approaches in the literature
to deal with the multiplicity of equilibria. The first is to model the probabilities of aggregated
outcomes that are robust to multiplicity. For example, in the simplest 2 × 2 × 1 game, the num-
ber of entrants is unique although the firm identity is undetermined (Bresnahan and Reiss, 1990;
Bresnahan and Reiss, 1991; Berry, 1992). However, information on firm heterogeneity is lost. If
I used it in this paper, I would not be able to estimate the fixed cost distributions, which are firm-
location specific. The second is to embrace the multiplicity and take a bounds approach (Ciliberto
and Tamer, 2009; Holmes, 2011; Pakes et al., 2015). The method partially identifies parameters
within a set that could be too large to be informative. Lack of point identification also becomes
difficult when performing counterfactual exercises. The third approach—the one taken here—is
to choose an equilibrium by imposing a certain entry sequence following Jia (2008), Atkeson and
Burstein (2008), Eaton et al. (2012), and Edmond et al. (2015) among many others. Although
I model the entry game as static, the assumption is convenient to avoid multiple equilibria. In
principle, estimates could be sensitive to the equilibrium selected and the predetermined order of
entry. Therefore, I provide robustness checks by estimating the model based on equilibria with
other ordering specifications. A more recent development of the literature involves specifying a
more general equilibrium selection rule that is a function of covariates and observables, as in Bajari
et al., 2010. The solution requires computing all equilibria and an equilibrium selection parameter
as part of the primitives to be estimated together with the model. Although this approach is more
general than imposing a certain entry sequence, the computational burden to calculate all equilibria
in an interdependent entry game is prohibitive.

With the solution of the multi-plant firms’ location game, the method of simulated moments
works as following. For the log-normally distributed fixed costs, I draw a 2 × 73-dimensional
matrix of fixed costs 300 times. I follow Antràs et al. (2017) by using quasi-random numbers
from a van der Corput sequence, which has better coverage properties than usual pseudo-random
draws. For each draw, firms maximize total expected profits by choosing where to build plants
using the algorithm above. I then use the fraction of entry over 300 draws as the simulated entry
probability for each firm in every location. There is actually another level of simulation for firm
markups. Notice that the expected variable profit function (12) involves numerical integration over
the markup. I use a stratified random sampling method in order to obtain good coverage of the
higher markup. I define intervals from 1 to µ̄ = η/(η − 1), [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,
1.9, 1.95, 1.97, 1.99, µ̄]. I then draw 5 uniform random numbers within these intervals. The draws
receive a weight inversely proportional to the length of the interval. The integral part of the profit
function is approximated by

∫ µ̄

1
f(µ) ≈

∑S
s=1wsf(µs).

The vector of moment functions, g(·), specifies the differences between the observed equilib-
rium outcomes and those predicted by the model. The following moment condition is assumed to
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hold at the true parameter value δ0 = {βF , σF}:

E
[
g(δ0)

]
= 0.

MSM finds an estimate such that

δ̂ = argmin
δ

1

|L|

[ |L|∑
ℓ=1

ĝ(δ)

]′

W

[ |L|∑
ℓ=1

ĝ(δ)

]
, (C-4)

where ĝ(·) is the simulated estimate of the moment function and W is a weighting matrix. I use
the identity matrix and weight the moments equally as baseline.

The complexity in the presence of having spatial correlation is that the moment functions g(·)
are no longer independent across locations. In order for the MSM estimators using a dependent
cross-sectional dataset to be consistent, a sufficient condition is that the dependence between lo-
cations should fade quickly as the distance increases (Conley, 1999). In the current model setup,
competition between plants becomes weaker when locations are further apart due to trade costs.
To ensure the speed of dependence decay, I further segregate the 149 FAF zones into eight districts
and assume that competition is negligible across them.

The map in Figure C.1 and Table C.5 show the division. The areas shaded in gray in the
districts map are FAF zones without cement production. Consumption and production are roughly
the same for each district, indicating smaller share of trade with areas outside. Furthermore, Figure
C.2 shows the distribution of FAF zones trading within the same district. FAF zones on average
export more than 88% of the cement production and import more than 82% of the consumption
within the same district. Out of the 73 producing zones, all of them exported at least 50 percent
to other FAF zones within the same district and more than three-fourths exported more than 80
percent within the same district. As for the importing cement markets, the distribution is slightly
dispersed. But still, three-quarters of the 149 markets imported more than 80 percent from FAF
zones located within the same district and more than 90 percent of the markets import at least half
of their cement consumption within the district. These trade flow statistics validate my assumption
of districts being relatively separated from one another.

An alternative way to restrain the geographic scope of the spillover effect is by assuming de-
pendence only occurs for the set of locations within a certain radius to each location, as in Jia
(2008). However, this method does not work for the multi-plant firm model. Existence of overlaps
across each location’s catchment area causes a violation of the submodularity of profit function,
which is essential when solving the equilibrium.

Cluster bootstrap is used to estimate the standard errors. District vectors are re-sampled 100
times with replacement to preserve the dependence among locations. An alternative is to use the
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Figure C.1: Districts map

Table C.5: Summary statistics of districts

Consumption
(million ton)

Production
(million ton)

Number of
Markets

Number of
Locations

Number of
Plants

Mountain and Pacific North 10.2 10.4 20 10 13
Mountain and Pacific South 13.9 14.2 13 9 16
West North Central 8.8 8.8 13 7 11
West South Central 16.5 16.1 17 7 15
East North Central 15.8 16.5 22 12 19
East South Central 4.3 4.1 11 6 8
New England and Middle Atlantic 10.9 10.5 28 10 18
South Atlantic 16.2 16.1 25 12 17

asymptotic normality of the MSM estimators. With spatial dependence, the asymptotic covariance
matrix of moment function according to Conley (1999) and Conley and Ligon (2002) should be

V0 =
∑
ℓ′∈Rℓ

E
[
g(δ0;Xf , ϕ̂, Â, θ̂, η̂)g(δ0;Xf , ϕ̂, Â, θ̂, η̂)

′]
,

and its sample analogue is

V̂ =
1

|L|
∑
ℓ

∑
ℓ
′∈Rℓ

[
ĝ(δ)ĝ(δ)

′]
,
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Figure C.2: Trade within the same district
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where Rℓ is the set of locations belonging to the same district as location ℓ. Note that the variance-
covariance estimator is not always positive semidefinite. I follow Jia (2008) and use a numerical
device to weight the moment by 0.5 for all the neighbors.

Adjusted for spatial correlation, the asymptotic distribution is√
|L|(δ̂ − δ0)

d−→ N(0, (1 + S−1)(G
′

0W0G0)
−1G

′

0W0V0W0G0(G
′

0W0G0)
−1),

where the gradient matrix G0 = E
[
▽δ′g(δ0)

]
and S is the number of simulations of the fixed cost

draws. In practice, I take 600 simulation draws from a van der Corput sequence for good coverage.
Associated with the covariance matrix, one can also use the optimal weighting matrix, W0 =

V −1
0 instead of an identity matrix. Using a consistent estimator of the optimal weighting matrix,

the MSM estimates are asymptotically efficient, with the asymptotic variance being

Avar(δ̂) = (1 + S−1)(G
′

0V
−1
0 G0)

−1/|L|.

Table C.6 displays results using a combination of identity weighting matrix, optimal weight-
ing matrix, clustered bootstrap standard errors, and asymptotic standard errors. Across different
methods, the estimates are consistent and close, and those using optimal weighting matrix exhibit
slightly greater precision.

A final remark is that the discrete choice decisions makes the objective function non-smooth
and the firm’s problem not globally convex. The shortcoming is that I cannot guarantee that my
solution is the global optimum of the problem. To address this issue, I tried the particle swarm
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Table C.6: Robustness check: estimation of fixed costs

Favor
LafargeHolcim

Favor
Cemex

Local advantage
for two firms

(1) (2) (3) (4) (5) (6) (7) (8) (9)

βF
cons -6.631 -6.631 -6.643 -6.126 -6.126 -6.038 -5.617 -5.617 -5.616

(1.616) (1.048) (0.209) (1.688) (1.268) (0.138) (1.559) (0.621) (0.165)

βF
CEX-USA -0.406 -0.406 -0.313 -0.363 -0.363 -0.303 -0.280 -0.280 -0.234

(0.373) (1.707) (0.180) (0.382) (0.661) (0.145) (0.372) (0.318) (0.158)

βF
LFH-CAN -3.734 -3.734 -3.698 -3.475 -3.475 -3.430 -3.480 -3.480 -3.587

(1.867) (0.724) (1.702) (2.318) (1.046) (0.255) (1.992) (1.133) (1.616 )

βF
dist 1.795 1.795 1.803 1.698 1.698 1.700 1.634 1.634 1.648

(0.220) (0.130) (0.018) (0.245) (0.073) (0.021) (0.221) (0.080) (0.025)

σF 2.790 2.790 2.568 2.581 2.581 2.437 2.694 2.694 2.591
(0.481) (0.472) (0.159) (0.504) (1.342) (0.105) (0.503) (0.411) (0.104)

Columns (1), (4) and (7) are baseline estimates in Table 3 using identity weighting matrix and bootstrapped standard er-
rors. Columns (2), (5), and (8) are estimates using identity weighting matrix and asymptotic standard errors. Columns
(3), (6) and (9) are 2-step estimates using optimal weighting matrix and asymptotic standard errors. The first step is per-
formed using identity weight on moments, followed by computing the optimal weight using the first-step estimates to be
fed in the second-step estimation.

optimization algorithm to search through 100 starting points. All sets of starting points resulted in
close outcomes.

C.4 Monetary transformation of estimates

In the first step of the estimation, location fixed effects are estimated up to a scalar, i.e., F̃Eℓ =

λ ln
(
NℓTℓw

−θ
ℓ

)
where the normalization constant is denoted as λ. Hence, the estimated market

sourcing potential is Φ̃m =
∑

ℓ exp(F̃Eℓ)τ
−θ
ℓm = eλΦm. Substituting to equation (13), the estimated

local price index with normalization would be

P̃m = Γ

(
θ + 1

θ

)
Φ̃−1/θ

m ×

[
(1−N) +

∑
f∈F

(
1− (1− µ̄−θ)sfm

)−1/θ

]
= e−λ/θPm,

where the normalization parameter enters the price index multiplicatively through Φm. Corre-
spondingly, firm’s costs are also scaled by e−λ/θ. In order to map the estimates to their dollar
values, I run the observed cement price on the model prediction and obtain a slope of 140.575,
which would then be used to scale up all the estimated costs.

Each firm’s cost of supplying cement is computed by taking average of equation (4) across all
the markets adjusted for the scaling. Their average fixed costs are computed based on the mean of

17



distribution (19) for locations where firms choose to build plant and also multiplied by 140.575.
Since the sample is for one year only, the fixed costs are further transformed to net present values
using 6 percent interest rate for discounting.

C.5 Additional check for model fitness

Table C.7 provides additional checks of the model prediction to the trade data. The predicted
bilateral share of imports is able to explain 64.4 percent of the data variation. To check to what
extent the prediction is affected by the gravity errors, I regress the final prediction after solving for
the endogenous plant locations on the gravity-predicted import share. The fit improves by around
20 percent. Restricting the sample to intra-district trade further increases the fit by another 6.7
percent. Since the import share is indirectly targeted through the first-step gravity regression, I
further compare the trade volume as shown in the last column of Table C.7. The degree of fit does
not fall.

Table C.7: Model fit of trade flows

Bilateral
share of import

Gravity-predicted
share of import

Gravity-predicted
share of import
within district

Bilateral
import volume

Model prediction 0.767 0.797 0.990 0.631
(0.005) (0.003) (0.008) (0.004)

Observations 10877 10877 1437 10877
R2 0.644 0.850 0.917 0.645

All regressions include a constant. Column (1) is regressed on the actual bilateral share of imports. Column (2) is
regressed on the gravity-predicted import share after teasing out the gravity errors. Column (3) restricts the sample
to intra-district trade. Column (4) compares to the trade volume instead of share.

D Counterfactual details

Using Table D.8 and the fact that producing one tonne of cement requires an energy of 4.432 mil-
lion BTU, I compute the average cost of fuel to produce a tonne of cement in 2016 before the car-
bon levy = (42%× 2.366 + 22%× 5.003 + 13%× 1.722 + 4%× 12.223)×4.432 = $12.44/tonne
cement. The pre-tax unit cost of fuel is close to $13.82, as found by Miller et al. (2017) using 2010
data. After the carbon levy, rates for each fuel subject to the levy are set based on the Canadian
Federal Carbon Pricing Backstop Technical Paper, such that they are equivalent to $50 per tonne
of CO2 by 2022. Assuming that there is no substitution of fuel to other carbon-saving sources after
the policy, the levy on fuel by 2022 becomes = (42%×(158.99/27.77)+22%×(0.0979/0.035)+
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13%× (0.1919/0.04) +4%× (0.1593/0.036))×4.432 = $16.93/tonne cement, and hence the cost
of fuel in 2022 will be 16.93 + 12.44 = $29.37/tonne cement.

Table D.8: Fuel costs and energy content

Energy Source Breakdown (%) Energy Content Price, 2016 ($/mBTU) Levy, 2022

Coal (coke) 42 27.77 mBTU/t 2.366 $158.99/t
Natural gas 22 0.035 mBTU/m3 5.003 $0.0979/m3

Petroleum coke 13 0.04 mBTU/L 1.722 $0.1919/L
Heavy fuel oil 4 0.036 mBTU/L 12.223 $0.1593/L

Based on the Portland Cement Association’s US and Canadian Portland Cement Labor-Energy Input Survey, the amount of energy
required to produce one tonne of cement is 4.432 million BTU. The remaining 11% energy is provided by electricity and 7% by other
sources, which are carbon tax free and excluded from the computation of fuel cost. computing cost of fuels.
Source: Energy Consumption Benchmark Guide: Cement Clinker Production, Energy Fact Book 2019-2020 (Natural Resources
Canada), Technical Paper on the Federal Carbon Pricing Backstop, US Energy Information Administration energy conversion calcu-
lators.

E SP approximation details

The expected variable profit of a plant at ℓ is proportional to its parent firm’s profit depending on
the share of consumers it supplied due to the identical price distribution (6) across plants owned
by the same firm. With the Fréchet distributed productivities, the share of consumers sourcing
from plant ℓ over all its firm’s consumers in m is sfℓm = ϕℓm

Φfm
, making the expected variable profit

E
[
πfℓ

]
=
∑

m sfℓmE
[
πfm

]
. I construct it using the same first two-step estimates from Sections

4.1 and 4.2 to disentangle the effects solely stemming from assuming separate entry of plants.
Table E.9 reports the binary Probit regression results in the single-plant approximation.

When translating the SP estimates to monetary terms, I also use 140.575 as the scalar to match
actual prices and discount rate 6% to be consistent when comparing to the multi-plant estimates.
Table E.10 shows the changes to firms and market aggregates when $50 carbon tax on fuel is
imposed to a model using SP approximated costs. Indeed, given smaller fixed costs, the SP ap-
proximation predicts a 10 percentage point decrease in the number of Canadian plants relative to
the MP predicted result, implying an over-prediction of 75 percent more closures of the top two
cement firms’ plants due to biased fixed cost estimates. Panel B finds that an over-prediction of
plant relocation leads to an increase in the carbon leakage rate from 26 percent to almost 29 per-
cent. The large difference in the prediction of plant relocation is partially offset by intensive margin
adjustment among remaining plants, resulting in moderate but still nontrivial difference in carbon
leakage rate. In terms of welfare, the biased estimates lead to a further reduction of 11 million for
Canada. Policymakers who use the naive separate-entry approach to estimate multi-plant firms’
interdependent location decisions would exaggerate the amount of production and carbon leakage.
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Table E.9: Estimation of entry without interdependency

Probit

constant 0.123
(1.489)

log distance to HQfℓ -0.413b

(0.202)

log variable profitsfℓ 0.563a

(0.174)

LFH-CAN 0.884c

(0.482)

CEX-USA 0.166
(0.281)

Observations 146
R2 0.161

Robust standard errors are in parenthe-
ses. Significance levels: c p<0.1, b

p<0.05, a p<0.01.

Table E.10: Aggregate effects of $50 carbon levy on fuel: MP vs. SP

Panel A: Impacts on market outcomes

%∆Number of plants %∆Price %∆Consum %∆Prod %∆Trade

LFH CEX Combined Canada US

(a) MP:
Canada -10.98 -29.58 -12.75 27.85 -37.97 -66.14 -54.25 -94.67
US 0.57 1.16 0.81 0.69 -2.63 2.33 224.83 1.02

(b) SP:
Canada -19.16 -34.69 -22.35 28.68 -37.95 -66.84 -55.39 -94.91
US 1.06 1.55 1.28 0.56 -2.38 2.52 234.88 1.14

Panel B: Impacts on welfare and emissions

∆ CS ∆ PS ∆ TaxRev ∆ Emissions Leakage rate

(a) MP:
Canada -310.50 -68.04 77.40 -6.05 26.32
US -35.54 10.70 - 1.60 -

(b) SP:
Canada -324.59 -64.87 77.25 -6.22 28.95
US -30.02 9.54 - 1.80 -

Columns in Panel A are denoted as percentage change relative to baseline using MP or SP fixed cost parameters.
Columns in Panel B are changes in levels relative to baseline. Consumer surplus, producer surplus, and government
revenue are denoted in million US dollars. Emissions are denoted in million of tonnes. The leakage rate is represented
as a percentage.
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F Data appendix

F.1 Locations of limestone deposits and cement plants

Figure F.3 maps the distribution of cement plants versus limestone resources. The information is
obtained from the US Geological Survey. There are 2909 limestone quarries in the US and 40 in
Canada. Most of the FAF zones studied in my sample have at least one limestone quarry available.
Obvious exceptions are Saskatchewan and North Dakota, where there are no limestone quarries or
cement plants. The locations where access to limestone is limited are outside the potential set of
locations to establish cement plants in my study.

Another issue is that large cement firms such as LafargeHolcim and Cemex typically use lime-
stone mined from their own quarries, and process and transport it to their cement plants right after
extraction. The vertical integration of limestone quarries and cement plants is not a focus of this
paper. Since the cement plants are usually only a few kilometers away from the limestone quarries,
the location choice of cement plants studied here can be regarded as a decision for an integrated
set of facilities, including mining activities and further processing.

Figure F.3: Cement and limestone resource location distribution
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F.2 Market structure details

In Table F.12, I report joint distributions for 26 cement firms by the number of plants owned and the
number of production locations entered. Panel A presents the distribution of the number of firms;
panel B shows the distribution of the number of plants owned; and panel C reports the distribution
of market share measured by capacity. From panel A, one can see that 34.6 percent of firms are
single-plant owners producing at one location. They account for 7.4 percent of cement plants and
6.5 percent of the market. In contrast, 11.5 percent of firms that own 11 or more plants across
locations control around 40.5 percent of plants and 41.6 percent of the market. Large cement firms
produce in more locations, own more plants, and have greater production capacity at each location.
Nevertheless, the group of smaller cement manufacturers is also too big to ignore.

Table F.12: Distribution by number of plants and FAF zones

Panel A: Percentage of firms

Number of FAF zones
Number of plants 1 2-4 5-10 11+ Total
1 34.6 0.0 0.0 0.0 34.6
2-4 0.0 30.8 0.0 0.0 30.8
5-10 0.0 3.8 19.2 0.0 23.1
11+ 0.0 0.0 0.0 11.5 11.5
Total 34.6 34.6 19.2 11.5 100.0

Panel B: Percentage of plants

Number of FAF zones
Number of plants 1 2-4 5-10 11+ Total
1 7.4 0 0 0 7.4
2-4 0 19 0 0 19
5-10 0 4.1 28.9 0 33.1
11+ 0 0 0 40.5 40.5
Total 7.4 23.1 28.9 40.5 100

Panel C: Market share

Number of FAF zones
Number of plants 1 2-4 5-10 11+ Total
1 6.5 0 0 0 6.5
2-4 0 21.5 0 0 21.5
5-10 0 3.6 26.7 0 30.4
11+ 0 0 0 41.6 41.6
Total 6.5 25.1 26.7 41.6 100

Notes: Without actual data on plants’ sales, market share is proxied
by the percentage of production capacity over the total installed ca-
pacity across all plants, assuming capacity is proportional to sales
by a constant.
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